Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
1.
Nature ; 625(7994): 360-365, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992757

RESUMEN

Bacteria encode hundreds of diverse defence systems that protect them from viral infection and inhibit phage propagation1-5. Gabija is one of the most prevalent anti-phage defence systems, occurring in more than 15% of all sequenced bacterial and archaeal genomes1,6,7, but the molecular basis of how Gabija defends cells from viral infection remains poorly understood. Here we use X-ray crystallography and cryo-electron microscopy (cryo-EM) to define how Gabija proteins assemble into a supramolecular complex of around 500 kDa that degrades phage DNA. Gabija protein A (GajA) is a DNA endonuclease that tetramerizes to form the core of the anti-phage defence complex. Two sets of Gabija protein B (GajB) dimers dock at opposite sides of the complex and create a 4:4 GajA-GajB assembly (hereafter, GajAB) that is essential for phage resistance in vivo. We show that a phage-encoded protein, Gabija anti-defence 1 (Gad1), directly binds to the Gabija GajAB complex and inactivates defence. A cryo-EM structure of the virally inhibited state shows that Gad1 forms an octameric web that encases the GajAB complex and inhibits DNA recognition and cleavage. Our results reveal the structural basis of assembly of the Gabija anti-phage defence complex and define a unique mechanism of viral immune evasion.


Asunto(s)
Bacterias , Proteínas Bacterianas , Bacteriófagos , Evasión Inmune , Multimerización de Proteína , Bacterias/genética , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/genética , Bacteriófagos/inmunología , Bacteriófagos/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/ultraestructura , ADN Viral/química , ADN Viral/metabolismo , ADN Viral/ultraestructura
2.
J Virol ; 97(10): e0063723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37750723

RESUMEN

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA-binding specificity. This analysis will lead to a more in-depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.


Asunto(s)
ADN Viral , Herpesvirus Humano 8 , Microscopía Electrónica , Multimerización de Proteína , Transactivadores , Humanos , Sitios de Unión , ADN Viral/química , ADN Viral/metabolismo , ADN Viral/ultraestructura , Herpesvirus Humano 8/química , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/ultraestructura , Unión Proteica , Mapas de Interacción de Proteínas , Especificidad por Sustrato , Transactivadores/química , Transactivadores/metabolismo , Transactivadores/ultraestructura , Replicación Viral/genética , Sarcoma de Kaposi/virología
3.
J Biol Chem ; 299(6): 104730, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084813

RESUMEN

Integration of retroviral DNA into the host genome involves the formation of integrase (IN)-DNA complexes termed intasomes. Further characterization of these complexes is needed to understand their assembly process. Here, we report the single-particle cryo-EM structure of the Rous sarcoma virus (RSV) strand transfer complex (STC) intasome produced with IN and a preassembled viral/target DNA substrate at 3.36 Å resolution. The conserved intasome core region consisting of IN subunits contributing active sites interacting with viral/target DNA has a resolution of 3 Å. Our structure demonstrated the flexibility of the distal IN subunits relative to the IN subunits in the conserved intasome core, similar to results previously shown with the RSV octameric cleaved synaptic complex intasome produced with IN and viral DNA only. An extensive analysis of higher resolution STC structure helped in the identification of nucleoprotein interactions important for intasome assembly. Using structure-function studies, we determined the mechanisms of several IN-DNA interactions critical for assembly of both RSV intasomes. We determined the role of IN residues R244, Y246, and S124 in cleaved synaptic complex and STC intasome assemblies and their catalytic activities, demonstrating differential effects. Taken together, these studies advance our understanding of different RSV intasome structures and molecular determinants involved in their assembly.


Asunto(s)
Integrasas , Virus del Sarcoma de Rous , Integración Viral , ADN Viral/química , ADN Viral/ultraestructura , Integrasas/química , Integrasas/ultraestructura , Virus del Sarcoma de Rous/genética , Virus del Sarcoma de Rous/química , Microscopía por Crioelectrón
4.
Nat Commun ; 12(1): 4538, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315863

RESUMEN

How the human cytomegalovirus (HCMV) genome-the largest among human herpesviruses-is packaged, retained, and ejected remains unclear. We present the in situ structures of the symmetry-mismatched portal and the capsid vertex-specific components (CVSCs) of HCMV. The 5-fold symmetric 10-helix anchor-uncommon among known portals-contacts the portal-encircling DNA, which is presumed to squeeze the portal as the genome packaging proceeds. We surmise that the 10-helix anchor dampens this action to delay the portal reaching a "head-full" packaging state, thus facilitating the large genome to be packaged. The 6-fold symmetric turret, latched via a coiled coil to a helix from a major capsid protein, supports the portal to retain the packaged genome. CVSCs at the penton vertices-presumed to increase inner capsid pressure-display a low stoichiometry, which would aid genome retention. We also demonstrate that the portal and capsid undergo conformational changes to facilitate genome ejection after viral cell entry.


Asunto(s)
Citomegalovirus/química , Citomegalovirus/genética , Empaquetamiento del ADN/genética , Genoma Viral , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Línea Celular , Citomegalovirus/ultraestructura , ADN Viral/genética , ADN Viral/ultraestructura , Humanos , Modelos Moleculares , Homología Estructural de Proteína , Virión/química , Virión/ultraestructura
5.
ACS Synth Biol ; 10(8): 1798-1807, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34077194

RESUMEN

DNA nanotechnology is leading the field of in vitro molecular-scale device engineering, accumulating to a dazzling array of applications. However, while DNA nanostructures' function is robust under in vitro settings, their implementation in real-world conditions requires overcoming their rapid degradation and subsequent loss of function. Viruses are sophisticated supramolecular assemblies, able to protect their nucleic acid content in inhospitable biological environments. Inspired by this natural ability, we engineered in vitro and in vivo technologies, enabling the encapsulation and protection of functional DNA nanostructures inside MS2 bacteriophage virus-like particles (VLPs). We demonstrate the ssDNA-VLPs nanocomposites' (NCs) abilities to encapsulate single-stranded-DNA (ssDNA) in a variety of sizes (200-1500 nucleotides (nt)), sequences, and structures while retaining their functionality. Moreover, by exposing these NCs to hostile biological conditions, such as human blood serum, we exhibit that the VLPs serve as an excellent protective shell. These engineered NCs pose critical properties that are yet unattainable by current fabrication methods.


Asunto(s)
ADN de Cadena Simple , ADN Viral , Escherichia coli , Nanopartículas , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/ultraestructura , ADN Viral/química , ADN Viral/genética , ADN Viral/ultraestructura , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Escherichia coli/virología , Levivirus/química , Levivirus/genética , Levivirus/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura
6.
Philos Trans A Math Phys Eng Sci ; 379(2201): 20200111, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34024128

RESUMEN

We study equilibrium configurations of hexagonal columnar liquid crystals in the context of characterizing packing structures of bacteriophage viruses in a protein capsid. These are viruses that infect bacteria and are currently the focus of intense research efforts, with the goal of finding new therapies for bacteria-resistant antibiotics. The energy that we propose consists of the Oseen-Frank free energy of nematic liquid crystals that penalizes bending of the columnar directions, in addition to the cross-sectional elastic energy accounting for distortions of the transverse hexagonal structure; we also consider the isotropic contribution of the core and the energy of the unknown interface between the outer ordered region of the capsid and the inner disordered core. The problem becomes of free boundary type, with constraints. We show that the concentric, azimuthal, spool-like configuration is the absolute minimizer. Moreover, we present examples of toroidal structures formed by DNA in free solution and compare them with the analogous ones occurring in experiments with other types of lyotropic liquid crystals, such as food dyes and additives. This article is part of the theme issue 'Topics in mathematical design of complex materials'.


Asunto(s)
Bacteriófagos/ultraestructura , Cristales Líquidos/ultraestructura , Bacteriófagos/química , Bacteriófagos/genética , Fenómenos Biofísicos , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , ADN Viral/química , ADN Viral/genética , ADN Viral/ultraestructura , Cristales Líquidos/química , Conceptos Matemáticos , Modelos Biológicos , Modelos Moleculares , Termodinámica , Empaquetamiento del Genoma Viral/genética , Empaquetamiento del Genoma Viral/fisiología
7.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904396

RESUMEN

HIV-1 replication commences inside the cone-shaped viral capsid, but timing, localization, and mechanism of uncoating are under debate. We adapted a strategy to visualize individual reverse-transcribed HIV-1 cDNA molecules and their association with viral and cellular proteins using fluorescence and correlative-light-and-electron-microscopy (CLEM). We specifically detected HIV-1 cDNA inside nuclei, but not in the cytoplasm. Nuclear cDNA initially co-localized with a fluorescent integrase fusion (IN-FP) and the viral CA (capsid) protein, but cDNA-punctae separated from IN-FP/CA over time. This phenotype was conserved in primary HIV-1 target cells, with nuclear HIV-1 complexes exhibiting strong CA-signals in all cell types. CLEM revealed cone-shaped HIV-1 capsid-like structures and apparently broken capsid-remnants at the position of IN-FP signals and elongated chromatin-like structures in the position of viral cDNA punctae lacking IN-FP. Our data argue for nuclear uncoating by physical disruption rather than cooperative disassembly of the CA-lattice, followed by physical separation from the pre-integration complex.


When viruses infect human cells, they hijack the cell's machinery to produce the proteins they need to replicate. Retroviruses like HIV-1 do this by entering the nucleus and inserting their genetic information into the genome of the infected cell. This requires HIV-1 to convert its genetic material into DNA, which is then released from the protective shell surrounding it (known as the capsid) via a process called uncoating. The nucleus is enclosed within an envelope containing pores that molecules up to a certain size can pass through. Until recently these pores were thought to be smaller than the viral capsid, which led scientists to believe that the HIV-1 genome must shed this coat before penetrating the nucleus. However, recent studies have found evidence for HIV-1 capsid proteins and capsid structures inside the nucleus of some infected cells. This suggests that the capsid may not be removed before nuclear entry or that it may even play a role in helping the virus get inside the nucleus. To investigate this further, Müller et al. attached fluorescent labels to the newly made DNA of HIV-1 and some viral and cellular proteins. Powerful microscopy tools were then used to monitor the uncoating process in various cells that had been infected with the virus. Müller et al. found large amounts of capsid protein inside the nuclei of all the infected cells studied. During the earlier stages of infection, the capsid proteins were mostly associated with viral DNA and the capsid structure appeared largely intact. At later time points, the capsid structure had been broken down and the viral DNA molecules were gradually separating themselves from these remnants. These findings suggest that the HIV-1 capsid helps the virus get inside the nucleus and may protect its genetic material during conversion into DNA until right before integration into the cell's genome. Further experiments studying this process could lead to new therapeutic approaches that target the capsid as a way to prevent or treat HIV-1.


Asunto(s)
Núcleo Celular/virología , Replicación del ADN , ADN Viral/biosíntesis , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , Internalización del Virus , Replicación Viral , Desencapsidación Viral , Linfocitos T CD4-Positivos/ultraestructura , Linfocitos T CD4-Positivos/virología , Proteínas de la Cápside/metabolismo , Núcleo Celular/ultraestructura , ADN Viral/genética , ADN Viral/ultraestructura , Células HEK293 , Infecciones por VIH/patología , Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , VIH-1/genética , VIH-1/ultraestructura , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Macrófagos/ultraestructura , Macrófagos/virología , Microscopía Electrónica , Microscopía Fluorescente , Factores de Tiempo
8.
Commun Biol ; 4(1): 330, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712691

RESUMEN

Despite conserved catalytic integration mechanisms, retroviral intasomes composed of integrase (IN) and viral DNA possess diverse structures with variable numbers of IN subunits. To investigate intasome assembly mechanisms, we employed the Rous sarcoma virus (RSV) IN dimer that assembles a precursor tetrameric structure in transit to the mature octameric intasome. We determined the structure of RSV octameric intasome stabilized by a HIV-1 IN strand transfer inhibitor using single particle cryo-electron microscopy. The structure revealed significant flexibility of the two non-catalytic distal IN dimers along with previously unrecognized movement of the conserved intasome core, suggesting ordered conformational transitions between intermediates that may be important to capture the target DNA. Single amino acid substitutions within the IN C-terminal domain affected intasome assembly and function in vitro and infectivity of pseudotyped RSV virions. Unexpectedly, 17 C-terminal amino acids of IN were dispensable for virus infection despite regulating the transition of the tetrameric intasome to the octameric form in vitro. We speculate that this region may regulate the binding of highly flexible distal IN dimers to the intasome core to form the octameric complex. Our studies reveal key steps in the assembly of RSV intasomes.


Asunto(s)
Microscopía por Crioelectrón , ADN Viral/ultraestructura , Integrasas/ultraestructura , Virus del Sarcoma de Rous/ultraestructura , Imagen Individual de Molécula , Integración Viral , ADN Viral/metabolismo , Integrasa de VIH/ultraestructura , Inhibidores de Integrasa/farmacología , Integrasas/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica , Multimerización de Proteína , Virus del Sarcoma de Rous/efectos de los fármacos , Virus del Sarcoma de Rous/enzimología , Virus del Sarcoma de Rous/genética , Integración Viral/efectos de los fármacos , Replicación Viral
9.
Nat Commun ; 11(1): 5043, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028863

RESUMEN

Human T-cell lymphotropic virus type 1 (HTLV-1) is a deltaretrovirus and the most oncogenic pathogen. Many of the ~20 million HTLV-1 infected people will develop severe leukaemia or an ALS-like motor disease, unless a therapy becomes available. A key step in the establishment of infection is the integration of viral genetic material into the host genome, catalysed by the retroviral integrase (IN) enzyme. Here, we use X-ray crystallography and single-particle cryo-electron microscopy to determine the structure of the functional deltaretroviral IN assembled on viral DNA ends and bound to the B56γ subunit of its human host factor, protein phosphatase 2 A. The structure reveals a tetrameric IN assembly bound to two molecules of the phosphatase via a conserved short linear motif. Insight into the deltaretroviral intasome and its interaction with the host will be crucial for understanding the pattern of integration events in infected individuals and therefore bears important clinical implications.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Integrasas/ultraestructura , Proteína Fosfatasa 2/ultraestructura , Virus Linfotrópico T Tipo 1 de los Simios/enzimología , Proteínas Virales/ultraestructura , Integración Viral , Secuencias de Aminoácidos/genética , Clonación Molecular , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN Viral/metabolismo , ADN Viral/ultraestructura , Virus Linfotrópico T Tipo 1 Humano/enzimología , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Integrasas/genética , Integrasas/metabolismo , Leucemia-Linfoma de Células T del Adulto/patología , Leucemia-Linfoma de Células T del Adulto/virología , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Paraparesia Espástica Tropical/patología , Paraparesia Espástica Tropical/virología , Multimerización de Proteína , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Homología de Secuencia de Aminoácido , Virus Linfotrópico T Tipo 1 de los Simios/genética , Imagen Individual de Molécula , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
J Mol Biol ; 432(14): 4139-4153, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32454153

RESUMEN

Phage G has the largest capsid and genome of any known propagated phage. Many aspects of its structure, assembly, and replication have not been elucidated. Herein, we present the dsDNA-packed and empty phage G capsid at 6.1 and 9 Šresolution, respectively, using cryo-EM for structure determination and mass spectrometry for protein identification. The major capsid protein, gp27, is identified and found to share the HK97-fold universally conserved in all previously solved dsDNA phages. Trimers of the decoration protein, gp26, sit on the 3-fold axes and are thought to enhance the interactions of the hexameric capsomeres of gp27, for other phages encoding decoration proteins. Phage G's decoration protein is longer than what has been reported in other phages, and we suspect the extra interaction surface area helps stabilize the capsid. We identified several additional capsid proteins, including a candidate for the prohead protease responsible for processing gp27. Furthermore, cryo-EM reveals a range of partially full, condensed DNA densities that appear to have no contact with capsid shell. Three analyses confirm that the phage G host is a Lysinibacillus, and not Bacillus megaterium: identity of host proteins in our mass spectrometry analyses, genome sequence of the phage G host, and host range of phage G.


Asunto(s)
Bacteriófagos/ultraestructura , Proteínas de la Cápside/genética , ADN Viral/ultraestructura , Conformación de Ácido Nucleico , Bacteriófagos/genética , Microscopía por Crioelectrón , Empaquetamiento del ADN/genética , ADN Viral/genética , Humanos , Ensamble de Virus/genética
12.
Nat Commun ; 10(1): 4471, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578335

RESUMEN

The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we use cryoelectron microscopy to determine the capsid structure of thermostable phage P74-26 to 2.8-Å resolution. We find P74-26 capsids exhibit an overall architecture very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T = 7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased with a larger, flatter major capsid protein. Given these results, we predict decreased icosahedral complexity (i.e. T ≤ 7) leads to a more stable capsid assembly.


Asunto(s)
Bacteriófagos/genética , Proteínas de la Cápside/genética , Cápside/metabolismo , Genoma Viral/genética , Inestabilidad Genómica/genética , Virión/genética , Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , ADN Viral/química , ADN Viral/genética , ADN Viral/ultraestructura , Calor , Modelos Moleculares , Thermus thermophilus/virología , Virión/química , Virión/ultraestructura , Ensamble de Virus/genética
13.
Nature ; 570(7760): 257-261, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31142842

RESUMEN

Herpesviruses are enveloped viruses that are prevalent in the human population and are responsible for diverse pathologies, including cold sores, birth defects and cancers. They are characterized by a highly pressurized pseudo-icosahedral capsid-with triangulation number (T) equal to 16-encapsidating a tightly packed double-stranded DNA (dsDNA) genome1-3. A key process in the herpesvirus life cycle involves the recruitment of an ATP-driven terminase to a unique portal vertex to recognize, package and cleave concatemeric dsDNA, ultimately giving rise to a pressurized, genome-containing virion4,5. Although this process has been studied in dsDNA phages6-9-with which herpesviruses bear some similarities-a lack of high-resolution in situ structures of genome-packaging machinery has prevented the elucidation of how these multi-step reactions, which require close coordination among multiple actors, occur in an integrated environment. To better define the structural basis of genome packaging and organization in herpes simplex virus type 1 (HSV-1), we developed sequential localized classification and symmetry relaxation methods to process cryo-electron microscopy (cryo-EM) images of HSV-1 virions, which enabled us to decouple and reconstruct hetero-symmetric and asymmetric elements within the pseudo-icosahedral capsid. Here we present in situ structures of the unique portal vertex, genomic termini and ordered dsDNA coils in the capsid spooled around a disordered dsDNA core. We identify tentacle-like helices and a globular complex capping the portal vertex that is not observed in phages, indicative of herpesvirus-specific adaptations in the DNA-packaging process. Finally, our atomic models of portal vertex elements reveal how the fivefold-related capsid accommodates symmetry mismatch imparted by the dodecameric portal-a longstanding mystery in icosahedral viruses-and inform possible DNA-sequence recognition and headful-sensing pathways involved in genome packaging. This work showcases how to resolve symmetry-mismatched elements in a large eukaryotic virus and provides insights into the mechanisms of herpesvirus genome packaging.


Asunto(s)
Microscopía por Crioelectrón , Empaquetamiento del ADN , Genoma Viral , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/ultraestructura , Conformación de Ácido Nucleico , Cápside/química , Cápside/ultraestructura , ADN Viral/química , ADN Viral/ultraestructura , Herpesvirus Humano 1/química , Modelos Moleculares , Virión/química , Virión/genética , Virión/ultraestructura
14.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965627

RESUMEN

Tobacco curly shoot virus, a monopartite begomovirus associated with betasatellite, causes serious leaf curl diseases on tomato and tobacco in China. Using single-particle cryo-electron microscopy, we determined the structure of tobacco curly shoot virus (TbCSV) particle at 3.57 Šresolution and confirmed the characteristic geminate architecture with single-strand DNA bound to each coat protein (CP). The CP⁻CP and DNA⁻CP interactions, arranged in a CP⁻DNA⁻CP pattern at the interface, were partially observed. This suggests the genomic DNA plays an important role in forming a stable interface during assembly of the geminate particle.


Asunto(s)
Begomovirus/ultraestructura , Microscopía por Crioelectrón/métodos , Cápside/ultraestructura , ADN Viral/ultraestructura
15.
Proc Natl Acad Sci U S A ; 116(9): 3556-3561, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30737287

RESUMEN

Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Thermus thermophilus Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.7-Å and 4.4-Å resolution, respectively, reveal conformational changes during capsid expansion. Capsomer interactions in the expanded capsid are reinforced by formation of intersubunit ß-sheets with N-terminal segments of auxiliary protein trimers. Unexpectedly, the capsid has T=7 quasi-symmetry, despite the P23-45 genome being twice as large as those of known T=7 phages, in which the DNA is compacted to near-crystalline density. Our data explain this anomaly, showing how the canonical HK97 fold has adapted to double the volume of the capsid, while maintaining its structural integrity. Reconstructions of the procapsid and the expanded capsid defined the structure of the single vertex containing the portal protein. Together with a 1.95-Å resolution crystal structure of the portal protein and DNA packaging assays, these reconstructions indicate that capsid expansion affects the conformation of the portal protein, while still allowing DNA to be packaged. These observations suggest a mechanism by which structural events inside the capsid can be communicated to the outside.


Asunto(s)
Bacteriófagos/ultraestructura , Cápside/ultraestructura , Empaquetamiento del ADN/genética , Virus ADN/ultraestructura , Bacteriófagos/genética , Microscopía por Crioelectrón , Virus ADN/genética , ADN Viral/genética , ADN Viral/ultraestructura , Virión/genética , Virión/ultraestructura , Ensamble de Virus/genética
16.
Mol Biol Cell ; 30(1): 146-159, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30403545

RESUMEN

Using a mixture of 10 purified DNA replication and DNA recombination proteins encoded by the bacteriophage T4 genome, plus two homologous DNA molecules, we have reconstituted the genetic recombination-initiated pathway that initiates DNA replication forks at late times of T4 bacteriophage infection. Inside the cell, this recombination-dependent replication (RDR) is needed to produce the long concatemeric T4 DNA molecules that serve as substrates for packaging the shorter, genome-sized viral DNA into phage heads. The five T4 proteins that catalyze DNA synthesis on the leading strand, plus the proteins required for lagging-strand DNA synthesis, are essential for the reaction, as are a special mediator protein (gp59) and a Rad51/RecA analogue (the T4 UvsX strand-exchange protein). Related forms of RDR are widespread in living organisms-for example, they play critical roles in the homologous recombination events that can restore broken ends of the DNA double helix, restart broken DNA replication forks, and cross over chromatids during meiosis in eukaryotes. Those processes are considerably more complex, and the results presented here should be informative for dissecting their detailed mechanisms.


Asunto(s)
Bacteriófago T4/genética , Replicación del ADN , ADN Viral/biosíntesis , Modelos Biológicos , Recombinación Genética , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Cadena Simple/metabolismo , ADN Superhelicoidal/metabolismo , ADN Superhelicoidal/ultraestructura , ADN Viral/ultraestructura , Moldes Genéticos , Proteínas Virales/metabolismo
17.
Micron ; 102: 44-50, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28888130

RESUMEN

The control of DNA packaging has been reported to be dependent on an ordered liquid-crystalline state. However, the textural characteristics that are typical of crystals and that resemble mesophases have not been reported for highly polymerized or even shorter types of DNA filaments under in vitro conditions that favor crystallization. Because DNA crystals are expected to exhibit particular textural optical anisotropies, pure and highly polymerized calf thymus DNA and simpler λ phage DNA were crystallized from solution drops and were analyzed using high-performance polarization microscopy with and without differential interference contrast (DIC) optics. Both types of DNA formed crystals that exhibited chiral supramolecular textures resembling the twist-grain boundary (TGB) columnar mesophases described for liquid crystals and exhibited intrinsic negative birefringence. To the best of our knowledge, this is the first observation using polarization/interference optics of pure DNA crystals that have TGB columnar mesophase-like textural characteristics. A comparison of the crystals formed from the highly polymerized calf thymus DNA and those formed from the shorter phage DNA strands revealed textural differences. Compared to the phage DNA crystals, the crystals of highly polymerized thymus DNA exhibited a more intertwisted columnar distribution and a fibrous texture between their columnar structures. In addition, a form birefringence phenomenon was detected only in the thymus DNA crystals. These characteristics are presumed to reflect the higher level of supramolecular order, self-assembly and chirality in highly polymerized calf thymus DNA crystals relative to that of crystals formed from the simpler, shorter, λ phage DNA. The higher-order supramolecular organization revealed here for in vitro DNA preparations raises the possibility that this structure could also occur, possibly to a smaller degree, during DNA self-aggregation under specific in vivo conditions. Whether the DNA crystal properties presently described play a role in the establishment of higher-order levels of hierarchical chromatin structure and consequently in chromatin physiology, should be further investigated.


Asunto(s)
ADN Viral/ultraestructura , ADN/ultraestructura , Animales , Bacteriófagos/genética , Birrefringencia , Bovinos , Cristalización , ADN/genética , ADN Viral/genética , Microscopía de Polarización
18.
Cell Rep ; 20(7): 1563-1571, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28813669

RESUMEN

We recently demonstrated that the large Pseudomonas chlororaphis bacteriophage 201φ2-1 assembles a nucleus-like structure that encloses phage DNA and segregates proteins according to function, with DNA processing proteins inside and metabolic enzymes and ribosomes outside the nucleus. Here, we investigate the replication pathway of the Pseudomonas aeruginosa bacteriophages φKZ and φPA3. Bacteriophages φKZ and φPA3 encode a proteinaceous shell that assembles a nucleus-like structure that compartmentalizes proteins and DNA during viral infection. We show that the tubulin-like protein PhuZ encoded by each phage assembles a bipolar spindle that displays dynamic instability and positions the nucleus at midcell. Our results suggest that the phage spindle and nucleus play the same functional role in all three phages, 201φ2-1, φKZ, and φPA3, demonstrating that these key structures are conserved among large Pseudomonas phages.


Asunto(s)
ADN Viral/genética , Fagos Pseudomonas/genética , Pseudomonas aeruginosa/virología , Tubulina (Proteína)/genética , Proteínas Virales/genética , Secuencia Conservada , ADN Viral/metabolismo , ADN Viral/ultraestructura , Microscopía Fluorescente , Fagos Pseudomonas/clasificación , Fagos Pseudomonas/metabolismo , Fagos Pseudomonas/ultraestructura , Pseudomonas aeruginosa/ultraestructura , Ribosomas/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura , Replicación Viral
19.
Nat Methods ; 14(9): 877-881, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28805793

RESUMEN

Using a manifold-based analysis of experimental diffraction snapshots from an X-ray free electron laser, we determine the three-dimensional structure and conformational landscape of the PR772 virus to a detector-limited resolution of 9 nm. Our results indicate that a single conformational coordinate controls reorganization of the genome, growth of a tubular structure from a portal vertex and release of the genome. These results demonstrate that single-particle X-ray scattering has the potential to shed light on key biological processes.


Asunto(s)
Algoritmos , Bacteriófagos/ultraestructura , Cristalografía por Rayos X/métodos , ADN Viral/ultraestructura , Imagenología Tridimensional/métodos , Dispersión del Ángulo Pequeño , Conformación Molecular , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Proc Jpn Acad Ser B Phys Biol Sci ; 93(5): 322-338, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28496054

RESUMEN

At DNA replication forks, the overall growth of the antiparallel two daughter DNA chains appears to occur 5'-to-3' direction in the leading-strand and 3'-to-5' direction in the lagging-strand using enzyme system only able to elongate 5'-to-3' direction, and I describe in this review how we have analyzed and proved the lagging strand multistep synthesis reactions, called Discontinuous Replication Mechanism, which involve short RNA primer synthesis, primer-dependent short DNA chains (Okazaki fragments) synthesis, primer removal from the Okazaki fragments and gap filling between Okazaki fragments by RNase H and DNA polymerase I, and long lagging strand formation by joining between Okazaki fragments with DNA ligase.


Asunto(s)
Replicación del ADN/genética , ADN Viral/química , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/genética , ADN/química , ADN/genética , ADN/ultraestructura , ADN Viral/ultraestructura , ADN Polimerasa Dirigida por ADN/química , Modelos Químicos , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...